The Tabular Method also called the DI Method is an easier way to do integration by parts
It simplifies by making you write less
The way it works is to make a table with 3 columns and a few rows
The first column is S for sign, second column is D for derivatives, and the third is I for integrals
The elements for the sign column are alternating plus and minuses + and -
The first D row is the where your $u$ goes and the the first I is where your $v$ goes
Next you take repeated derivative for $u$ in the D column and repeated anti-derivatives in the I column
For example:
$$\begin{align} \int{(x^3 + 2x)\sin(x) \ dx} \end{align}$$
$$\begin{align} &\begin{array} {c | c | c} S & D & I \\ \hline + & x^3 + 2x & \sin(x)\\ - & 3x^2 + 2 & -\cos(x)\\ + & 6x & -\sin(x)\\ - & 6 & \cos(x)\\ + & 0 & \sin(x) \\ \end{array} \\ \\ \end{align}$$
The final step is to multiply the sign by the derivative, then multiply that by the the integral that is one down
Repeat that until all the way down, adding each term
For example:
$$\begin{align} \int{(x^3 + 2x)\sin(x) \ dx} = -(x^3 + 2x)\cos(x) + (3x^2 + 2)sin(x) + 6xcos(x) + C \end{align}$$
When Do You Stop?
Stop when the derivative column reaches 0
Stop when the product of the derivative and integral can be integrated easily
Stop when the product of the derivative and integral can be turned into an integral that has been repeated
The reason why we do all 3 of these is because the product of the bottom row is the the integral in the output of integration by parts
Examples
$$\begin{align} \int{x^3ln(x) \ dx} \end{align}$$
$$\begin{align} &\begin{array} {c | c | c} S & D & I \\ \hline + & ln(x) & x^3 \\ - & 1/x & x^4 / 4\\ \end{array} \\ \\ \end{align}$$
Here we can stop because we can easily the integrate the bottom row
$$\begin{align} \int{x^3ln(x) \ dx} &= \frac{x^4ln(x)}{4} - \int{- \frac{1}{x} \frac{x^4}{4} \ dx} \\ &= \frac{x^4ln(x)}{4} + \int{\frac{x^3}{4} \ dx} \\ &= \frac{x^4ln(x)}{4} + \frac{x^4}{16} + C\\ \end{align}$$
$$\begin{align} \int{e^xsin(3x)\ dx} \end{align}$$
$$\begin{align} &\begin{array} {c | c | c} S & D & I \\ \hline + & e^x & \sin(3x)\\ - & e^x & -\cos(3x)/3\\ + & e^x & -\sin(3x)/9\\ \end{array} \\ \\ \end{align}$$
Here we an stop because we can transform the bottom row into our original integral
$$\begin{align} \int{e^xsin(3x)\ dx} &= -\frac{e^xcos(3x)}{3} + \frac{e^xsin(3x)}{9} + \int{-\frac{e^xsin(3x)}{9} \ dx} \\ \frac{9}{9}\int{e^xsin(3x)\ dx} &= -\frac{e^xcos(3x)}{3} + \frac{e^xsin(3x)}{9} - \frac{1}{9}\int{e^xsin(3x)\ dx} \\ \frac{10}{9}\int{e^xsin(3x)\ dx} &= -\frac{e^xcos(3x)}{3} + \frac{e^xsin(3x)}{9}\\ \int{e^xsin(3x)\ dx} &= \frac{9}{10}\left(-\frac{e^xcos(3x)}{3} + \frac{e^xsin(3x)}{9}\right) + C\\ \end{align}$$
$$\begin{align} \int{x^{12}e^x\ dx} \end{align}$$
$$\begin{align} &\begin{array} {c | c | c} S & D & I \\ \hline + & x^{12} & e^x \\ - & 12x^{11} & e^x\\ + & 132x^{10} & e^x \\ - & 1320x^9 & e^x\\ + & 11880x^8 & e^x \\ - & 95040x^7 & e^x\\ + & 665280x^6 & e^x \\ - & 3991680x^5 & e^x\\ + & 19958400x^4 & e^x \\ - & 79833600x^3 & e^x\\ + & 239500800x^2 & e^x \\ - & 479001600x & e^x\\ + & 479001600 & e^x \\ - & 0 & e^x \\ \end{array} \\ \\ \end{align}$$
Here we stop because the derivative became 0
$$\begin{align} \int{x^{12}e^x\ dx} = x^{12}e^x - 12x^{11}e^x + 132x^{10}e^x - 1320x^9e^x + 11880x^8e^x - 95040x^7e^x + 665280x^6e^x - 3991680x^5e^x \\ +19958400x^4e^x - 79833600x^3e^x + 239500800x^2e^x - 479001600xe^x + 479001600e^x + C \end{align}$$